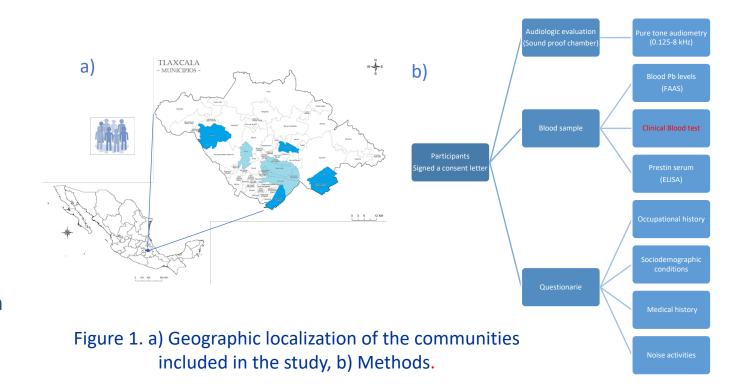


Evaluation of serum prestin as a new potential biomarker for hearing damage due to lead exposure in population from Tlaxcala, Mexico


Solis-Ángeles S¹, Juárez-Pérez Cuauhtémoc A², Cabello-López A², Fascinetto-Dorantes L², Gómez-Morán A², Torres-Valenzuela A², Aguilar-Madrid G², Del Razo LM¹

¹Departamento de Toxicología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico Cit

Key points

- ☐ Divalent metals have been classified as ototoxicants⁴.
- Lead has been considered as potential otototoxic from the inner ear.
- Prestin protein is expressed only in outside hairy cells from the inner ear³.
- ☐ Serum prestin levels change due to noise and ototoxic drugs¹.
- At the time there is no biomarker for hearing impairment, and only 1% of the population have access to get an audiometry test².
- ☐ Hearing damage reduce hearing response affecting social behavior.
- ☐ The aim of this study was to evaluate serum prestin and the relation with hearing damage in participants exposed to environmental and occupational lead.

Methods

RESULTS

I. General characteristics and exposure risk for hearing loss

	$A11 \\ n=315$	Group I $n=111$	Group II $n=204$	p-value	
Male, n(%)	147 (47%)	45 (41%)	102 (50%)		
Female, n(%)	168 (53%)	66 (59%)	102 (50%)	0.068	
Age years, M(IQR)	42 (34-52)	43 (34-53)	42 (34-51)	0.499	
Age ≤39 years, n(%)	130 (41%)	31 (25-36)	31 (24-36)	0.471	
$Age \ge 40 \text{ years, } n(\%)$	185 (59%)	50.5 (44-58)	49 [43-55]	0.471	
BMI Kg/m², M(IQR)	27.9 (25.3-31.1)	28.2 (25.2-31.8)	27.9 (25.3-30.5)	0.458	
BMI normal, n(%)	74 (23%)	26 (23%)	48 (24%)	0.550	
BMI overweight-obesity, n(%)	241 (77%)	85 (77%)	156 (76%)		
SBP mmHg, M(IQR)	119 (111.6-129)	118.6 (110.6-126)	120.6 (112.3-129.3)	0.075	
DBP mmHg, M(IQR)	71.6 (65.6-77)	70.8 (65.3-70.8)	72 (66-77)	0.364	
Normal BP, n(%)	284 (90%)	97 (87%)	187 (92%)	0.154	
High BP, n(%)	31 (10%)	14 (13%)	17 (8%)		
Glycaemia mg/dl, M(IQR)	96 (90-105)	95 (90-103)	97 (90-107)	0.386	
Normal glycaemia, n(%)	281 (89%)	101 (91%)	180 (88%)	0.291	
High glycaemia, n(%)	34 (11%)	10 (9%)	24 (12%)		
Triglycerides mg/dl, M(IQR)	156 (116-219)	167 (123-236)	150 (109.5-209)	0.083	
Normal triglycerides, n(%)	147 (47%)	46 (41%)	101 (49%)	0.105	
High triglycerides, n(%)	168 (53%)	65 (59%)	103 (50%)	0.105	
c-HDL mg/dl, M (IQR)	42.6 (36-51)	43 (35-51)	42 (37-51)	0.944	
Low c-HDL, n(%)	178 (56%)	62 (56%)	116 (57%)	0.478	
High c-HDL, n(%)	137 (44%)	49 (44%)	88 (43%)	0.478	
c-LDL mg/dl, M (IQR)	114 (93-133)	114 (94-137)	114 (93-133)	0.982	
Low c-LDL, n(%)	108 (34%)	39 (35%)	69 (34%)	0.455	
High c-LDL, n(%)	211 (66%)	72 (65%)	135 (66%)		
Tcol mg/dl, M (IQR)	180 (155-205)	183 (154-207)	179 (155-204.5)	0.569	
Low Tcol, n(%)	268 (85%)	91 (82%)	177 (87%)	0.165	
High Tcol, n(%)	47 (15%)	20 (18%)	27 (13%)	0.163	
MS $risk^a$, $n(\%)$	239 (76%)	88 (79%)	151 (74%)	0.183	
No MS riska, n(%)	76 (24%)	23 (21%)	53 (26%)	0.183	

No MS risk*, n(%) 76 (24%) 23 (21%) 53 (20%)

M: median, IQR: interquartile range, BMI: body mass index, SBP: systolic blood pressure, DBP: diatolic blood pressure, BP: blood pressure, c-HDL: high density lipoprotein cholesterol, c-LDL: low density lipoprotein cholesterol, Tcol: total cholesterol, MS: metabolic syndrome.

BMI: normal <25 kg/m², overweight or obesity ≥25 kg/m². BP: normal <129/80 mmHg, high ≥130/85 mmHg. Glycaemia: normal <126 mg/dl, high >126 mg/dl. Triglycerides: normal <150 mg/dl, io+HDL: low <40 mg/dl, high >40 mg/dl. c-LDL: low <100 mg/dl, high >100mg/dl. Total cholesterol: low <200 mg/dl, high >200 mg/dl.

"MS risk: presence of two or more risk factors for metabolic syndrome (high triglycerides, hypertension, low c-HDL, high blood glucose, high hip-waist index).

Table 2. Hearing lo	ss risks factors	and blood l	ead levels of the st	udy population
	All n=315	Group I <i>n=111</i>	Group II $n=204$	p-value
BPb μg/dl, M (IQR)	14 (7.5-22.6)	6 (3.9-7.7)	20.7 (14.6-28.4)	< 0.001

BPb μg/dl, M (IQR)	14 (7.5-22.6)	6 (3.9-7.7)	20.7 (14.6-28.4)	< 0.001
Women BPb µg/dl, M (IQR)	12.5 (6.6-20.8)	5.7 (3.8-7.5)	17.7 (13.6-25.5)	< 0.001
$\it Men~BPb~\mu g/dl, M~(IQR)$	16.9 (8.3-25.8)	6.5 (4.2-8)	21.8 (16.2-36.8)	<0.001
LGC user, n(%)	295 (94%)	100 (90%)	195 (96%)	0.050
LGC worker, n(%)	207 (68%)	52 (47%)	155 (79%)	< 0.001
Noise activities per month ^a , n(%)	194 (62%)	75 (67%)	119 (59%)	0.068
Earphones use, (n%)	80 (25%)	33 (30%)	47 (23%)	0.122
Smoking, n(%)	83 (26%)	33 (30%)	50 (25%)	0.192

^aRecord for one or two noise activities per month (motorcycle, hair dryer, firearms use).

II. Auditory function

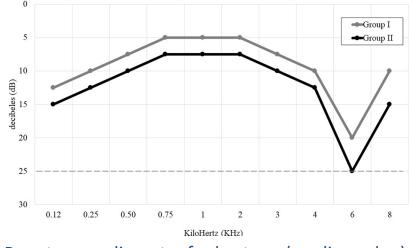


Figure 2. Pure tone audiometry for best ear (median value) according to blood lead levels (dash line indicate normal hearing threshold

REFERENCES

III. Serum prestin levels

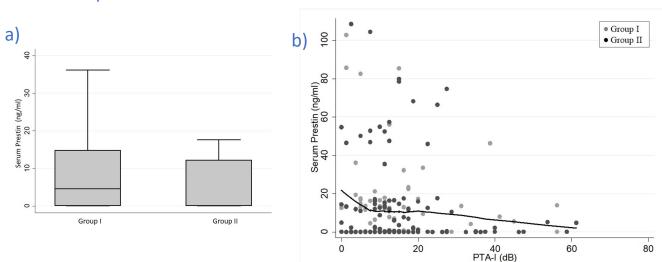


Figure 3. a) serum prestin levels, b) scaterploot and correlation for serum prestin levels according to PTA- value according to BPb groups (n=253), Rho -0.12, p=0.045.

IV. Robust multiple linear regression models

g/mL) of the stud Predictive variables	β-Coeficient [CI 95%] ^a	p-value	R ² (n=253)
Pta-I, dB	-0.26 [-0.46,-0.06]	0.007	
BPb, μg/dl	-0.49 [-6.1, 5.1)	0.629	
Sex, Male	-12.8 [-17.8, -7.9]	0.001	0.151**
BMI >25	-0.4 [-0.8, 0.009]	0.049	
Earphones use	-10.14 [-17.77, -2.51]	0.011	
Pta-II, dB	-0.25 [-0.47, -0.03]	0.002	
BPb, µg/dl	-0.50 [-6.18, 5.18]	0.073	
Sex, Male	-12.8 [-17.7, -7.8]	0.001	0.150**
BMI >25	-0.44 [-0.89, -0.0005]	0.043	
Earphones use	-10.11 [-17.74, -2.49]	0.012	
High, dB	-0.17 [-0.38, 0.03]	0.049	
BPb, µg/dl	-0.76 [6.48, 4.9]	0.731	
Sex, Male	-12.6 [17.5, -7.68]	0.001	0.145**
BMI >25	-0.46 [-0.92, -0.007]	0.041	
Earphones use	-10 [-17.76, -2.46]	0.012	
Broad, dB	-0.24 [-0.47, -0.02]	0.023	
BPb, µg/dl	-0.55 [-6.23, 5.12]	0.660	
Sex, Male	-12.87 [-17.8, -7.9]	0.001	0.149**
BMI >25	-0.45 [-0.90, -0.004]	0.045	
Earphones use	-10.09 [-17.71, -2.47]	0.012	
	body mass index, PTA: pur fidence Interval 95%.	re tone averag	e, BPb: blood
ΓA-I (0.5-4 kHz),	PTA-II (0.5-6 kHz), High (2 to 8 kHz), 1	Broad (0.125 t
kHz).			
verage difference	of serum prestin levels cha	ange per unit	variation of th

CONCLUSION

Our data indicate that lead exposure is related to an increase in hearing threshold, and serum prestin protein decreased according to the hearing threshold increase. This is the first study to evaluate prestin as a potential biomarker for hearing damage due to lead exposure without noise exposure. Also, this study showed important differences between prestin concentration in women and men.